Lý do 0 là số chẵn Tính chẵn lẻ của số không

Định nghĩa chuẩn của một "số chẵn" có thể được dùng để chứng minh trực tiếp rằng không là số chẵn. Một số được gọi là "chẵn" nếu nó là một bội nguyên của 2. Ví dụ, 10 là một số chẵn vì nó bằng 5 × 2. Tương tự như vậy, 0 là một bội nguyên của 2, cụ thể là 0 × 2, vì vậy 0 là số chẵn.[2]

Cũng có thể giải thích tại sao không là số chẵn mà không cần các định nghĩa chính xác.[3] Những lời giải thích sau giải thích tại sao không là số chẵn dựa theo các khái niệm số cơ bản. Dựa vào nền móng này, ta có thể đưa ra cơ sở cho chính định nghĩa đó—và tính áp dụng của nó với số không.

Giải thích cơ bản

Hộp chứa 0 vật không có vật đỏ nào dư ra.[4]

Không là một số, và các số được dùng để đếm. Cho một tập hợp các đồ vật, một người sẽ sử dụng một số để mô tả số lượng đồ vật trong tập hợp này. Không là phép đếm của không có đồ vật; theo một cách chính xác hơn, nó là số lượng đồ vật trong một tập hợp rỗng. Khái niệm tính chẵn lẻ được dùng để tạo các nhóm chứa hai đồ vật. Nếu các đồ vật có thể được chia thành các nhóm, mỗi nhóm chứa hai đồ vật, mà không còn vật nào còn sót lại, thì số đồ vật chẵn. Nếu có một vật bị dư ra, thì số đồ vật lẻ. Tập hợp rỗng có thể chia thành không nhóm, mỗi nhóm chứa hai vật, và không còn vật nào còn sót lại sau khi chia, vậy nên không là số chẵn.[5]

Cách giải thích này có thể được minh họa bằng cách vẽ các đồ vật theo cặp. Vì ta khó có thể mô tả được 0 nhóm hai đồ vật, và cũng khó có thể nhấn mạnh được vào sự không tồn tại của một vật còn sót lại, nên ta có thể vẽ các cách chia nhóm của các số khác và so sánh với trường hợp số không. Ví dụ, trong nhóm năm đồ vật, có hai cặp. Quan trọng hơn, có một vật bị dư ra, vậy nên 5 là số lẻ. Trường hợp có bốn vật, không còn vật nào dư ra, vậy nên 4 là số chẵn. Với trường hợp chỉ có một vật, không có cặp nào, và có dư ra một vật, vậy nên 1 là số lẻ. Trong nhóm không đồ vật, không còn vật nào dư ra, vậy nên 0 là số chẵn.[6]

Còn có một định nghĩa chắc chắn hơn về tính chẵn: nếu số vật trong một tập hợp có thể được thành hai nhóm, mỗi nhóm có số lượng vật giống nhau, thì số đồ vật chẵn. Định nghĩa này tương đương với định nghĩa đầu. Một lần nữa, ta dễ dàng chứng minh được không là số chẵn vì tập hợp rỗng có thể được chia thành hai nhóm, mỗi nhóm không đồ vật.[7]

Các con số cũng có thể được minh họa bằng các điểm trên một trục số. Khi đánh dấu phân biệt các số lẻ và chẵn, ta có thể thấy rõ quy luật của chúng, đặc biệt khi thêm cả các số âm:

Các số chẵn và lẻ luân phiên nhau. Bắt đầu từ bất cứ số chẵn nào, đếm xuôi hoặc ngược hai đơn vị đều tới được các số chẵn khác, và hoàn toàn không thể bỏ qua được số không.[8]

Sử dụng phép nhân, tính chẵn lẻ có thể được tiếp cận một cách chính xác hơn bằng các biểu thức số học. Mọi số nguyên đều có thể phân tích theo một trong hai dạng: (2 × ▢) + 0 với số chẵn hoặc (2 × ▢) + 1 với số nguyên. Ví dụ, 1 là số lẻ vì 1 = (2 × 0) + 1, và 0 là số chẵn vì 0 = (2 × 0) + 0. Lập bảng các số được phân tích theo quy tắc trên sẽ củng cố lại hình ảnh về trục số phía trên.[9]

Định nghĩa tính chẵn lẻ

Định nghĩa chính xác của một thuật ngữ toán học, ví dụ như "chẵn" nghĩa là "bội nguyên của hai", thực chất chỉ là một quy ước. Không giống như "chẵn", một số thuật ngữ toán học được xây dựng một cách có chủ đích để loại trừ các trường hợp tầm thường hay suy biến. Các số nguyên tố là một ví dụ điển hình. Trước thế kỷ 20, các định nghĩa về tính nguyên tố không nhất quán, và các nhà toán học tiêu biểu như Goldbach, Lambert, Legendre, Cayley, và Kronecker còn ghi rằng 1 là một số nguyên tố.[10] Định nghĩa "số nguyên tố" hiện đại là "số nguyên dương có đúng 2 ước số", vậy nên 1 không phải số nguyên tố. Định nghĩa này có thể được kiểm chứng vì nó phù hợp hơn với các định lý toán học có liên quan tới các số nguyên tố. Ví dụ, định lý cơ bản của số học có thể được phát biểu dễ dàng hơn khi 1 không được coi là số nguyên tố.[11]

Ta có thể định nghĩa lại thuật ngữ "số chẵn" theo một cách mà nó không còn bao gồm số không nữa. Tuy nhiên, trong trường hợp này, định nghĩa mới sẽ khiến các định lý liên quan tới các số chẵn khó phát biểu hơn. Có thể thấy rõ hệ quả này ngay trong các quy luật đại số với các số chẵn và lẻ.[12] Tiêu biểu nhất là quy luật về các phép toán cộng, trừnhân:

chẵn ± chẵn = chẵnlẻ ± lẻ = chẵnchẵn × nguyên = chẵn

Thay các giá trị phù hợp vào vế trái của các quy luật này, vế phải hoàn toàn có thể có kết quả bằng 0:

2 − 2 = 0−3 + 3 = 04 × 0 = 0

Vì vậy, các quy luật trên sẽ là không đúng nếu không không phải là số chẵn.[12] Ít ra thì chúng cũng phải được sửa đổi lại. Ví dụ, một nghiên cứu giả sử rằng các số chẵn được cho là các bội nguyên của hai, nhưng riêng số không "không chẵn cũng không lẻ".[13] Nếu vậy, các quy luật với số chẵn và lẻ phải có thêm các trường hợp ngoại lệ:

chẵn ± chẵn = chẵn (hoặc không)lẻ ± lẻ = chẵn (hoặc không)chẵn × nguyên khác không = chẵn[13]

Việc thêm vào các trường hợp ngoại lệ cho số không trong định nghĩa về sự chẵn sẽ khiến ta cũng phải bổ sung các ngoại lệ tương tự cho các quy luật với số chẵn. Nói theo cách khác, việc áp dụng các quy luật dành cho các số chẵn dương và bắt buộc chúng phải đúng với toàn bộ số nguyên cũng sẽ bắt buộc số không phải là số chẵn.[12]

Tài liệu tham khảo

WikiPedia: Tính chẵn lẻ của số không http://cs.uwaterloo.ca/journals/JIS/VOL15/Caldwell... http://www.deseretnews.com/article/912430/To-hide-... http://www.jewishworldreview.com/tony/snow022301.a... http://www.jsonline.com/story/index.aspx?id=413306 http://www.sciencedirect.com/science/article/pii/S... http://www.straightdope.com/columns/read/1723/is-z... http://deepblue.lib.umich.edu/handle/2027.42/65072 http://www-personal.umich.edu/~dball/articles/Ball... //arxiv.org/abs/1209.2007 http://www.diva-portal.org/smash/get/diva2:542328/...